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Abstract-Cherchaev et al. (l992) gave a sufficient condition for a change in the elastic tensor field
to preserve the stress state of a plane linearly elastic solid subject to prescribed traction forces on its
boundary. This condition turned out to have a number of fruitful applications in the mechanics of
composite materials and was later extended by Dundurs and Markenscoff (1993). The present work
addresses and answers the question whether there is a yet more general condition. We show that:
(i) if the change in the elastic tensor field is required to be hyperelastic, the extended condition of
Dundurs and Markenscoff is not only sufficient but also necessary: (ii) if the change in the elastic
tensor field is relaxed so as to be elastic, a more general necessary and sufficient condition exists. In
proving these two conclusions, several orthogonal decompositions are constructed for third- and
fourth-order tensors presenting index permutation symmetries. Such decompositions are probably
also useful for solving other problems in mechanics. 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

Consider a plane solid PJ occupying, in its reference configuration, an open, bounded,
simply-connected domain n of a two-dimensional (2-D) Euclidean point space R2

, with an
as the boundary (Fig. 1). Under the action of some prescribed tractions t on an, ,@

undergoes smal1 deformations and the material M constituting PJ behaves as a linearly
elastic one so as to be characterized by a 2-D elastic tensor field Il«x) over n:= n u an. In
such a context, Cherkaev et al. (1992) proved that substituting M by another linearly elastic
material M' does not alter the stress tensor field T(x) over nif the elastic tensor field Il<'(x)
of M' is related to Il«x) by

K'(x) = ll«x)+c!R, [R:= 1 @ 1-~. (1.1 )

Here, c denotes a constant scalar, ® the usual tensor product operation, 1 the identity
tensor on a 2-D Euclidean space 1/, and ~ the identity on the space Sym of 2nd-order
symmetric tensors on 1/. The result of Cherkaev et al. is of both theoretical and practical
importance and is now referred to as the CLM theorem. Since its publication, it has inspired
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Fig. I. The linearly elastic material constituting ,J4 is characterized by lK(x) in (a) and by [",,'(x} in

(a').
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a good few investigators (Thorpe and Jasiuk, 1992; Christensen, 1993; Dundurs and
Markenscoff, 1993; Jun and Jasiuk, 1993; Jasiuk et al., 1994; Moran and Gosz, 1994;
Chen, 1995; Milton and Movchan, 1995; Ostoja-Starzewski and Jasiuk, 1995; Zheng and
Hwang, 1996, 1997). Of them, Dundurs and Markenscoff (1993) generalized the CLM
theorem in two directions, firstly by allowing f!J to be multiply-connected and made of a
non smoothly inhomogenous material, and secondly by extending the relation between
K(x) and lK(x) from the constant one (1.1) to the following affine one:

1K'(x) = lK(x) + (b' x + c)lRI, (1.2)

where b' x stands for the scalar product of x En by a constant vector bE i/·.
The present work was initiated by the following question:

Is there a relation more general than (I .2)?

To the best of the author's knowledge this question is open. Clearly, the answer to it can
have only two possibilities: (i) there is no relation more general than (1.2); (ii) there is
effectively a relation more general than (1.2). The first possible answer means that (1.2) is
not only sufficient but also necessary. If this answer were proved to be correct, it would
complete the conclusion ofDundurs and Markenscoffwhile clarifying the necessity of (1.2).
The second possible answer amounts to finding a relation which, ideally not only sufficient
but also necessary, includes (1.2) as a particular one. If such a relation were proved to exist,
relation (1.2) would further be extended. So, in any case the answer to our question is
constructive.

To make our question precise, let us describe, with the help of Fig. I, the problem
originally set by Cherkaev ef al. (1992) in an extended and complete way. The data for the
traction boundary value problem of plane linear elasticity are (n, IK, t) in the case (a), and
(n, IK', t) in the case (a'). Without loss of generality, IK' can be considered as being related
to IK by

1K'(x) = lK(x) + [II(x), (1.3)

where [II(x) is the difference between the fields 1K'(x) and lK(x). As the domain nand
tractions t acting on on are the same in both cases, we are naturally led to ask what are the
functions for [II(x) =F @, such that the stress field rex) in the case (a') is identical to the
stress field T(x) in the case (a). If one of these two fields, say T(x), is taken as the reference
stress field, it is clear that, among the functions thus sought for [])(x), certain may depend
on the specific data (n, IK, t), since T(x) does. However, such functions present no general
interests because of their data dependence. Thus, our question becomes the problem of
finding out all those functions for [II(x) =F @, such that they are independent of any data
(n, IK, t) and that the stress states in the cases (a) and (a') are identical. This problem is
solved in the present work. We show that:

• if [II is required to be hyperelastic, i.e. the Cartesian matrix components D'imn of [II have
the index permutation symmetries D i/mn = D jimn = D mnij , then the expression
[II(x) = (b' x + c) IRI is general, so that (1.2) is not only sufficient but also necessary;

• if [])(x) is relaxed so as to be elastic, i.e. D,/mn = D j,mn = D i/m", then it has a more general
necessary and sufficient expression: [II(x) = (b' x + c)1RI + Vex), where Vex) is a quadratic
polynomial function ofx and specified by eqn (3.35b).

The outline of this paper is as follows. In Section 2, we first present the notation used
throughout the paper, and then derive several orthogonal unique decompositions for third­
and fourth-order tensors with index permutation symmetries, which are needed for proving
the aforementioned two conclusions. Most of these decompositions are new to the knowl­
edge of the author. In Section 3. the foregoing problem is carefully formulated so that the
condition governing [j)(x) is established. In solving the problem, we proceed in two steps,
successively considering [II(x) to be hyperelastic and elastic. In both cases, the strategy
adopted consists in using the solutions of some particular traction boundary value problems
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of plane linear elasticity to deduce the necessary conditions for lI:D(x), and checking whether
the last necessary conditions obtained for lI:D(x) are also sufficient. This strategy runs counter
to that employed by Cherchaev et al. (1992), Dundurs and Markenscoff (1993) and others,
who proceeded from getting the sufficient conditions for lI:D(x). Our strategy is technically
applicable owing to the orthogonal decompositions constructed in Section 2. The paper
ends with a few concluding comments given in Section 4.

2. PRELIMINARIES

This section is essentially concerned with some algebraic properties of 2-D third- and
fourth-order tensors exhibiting index permutation symmetries. As will be seen in Section
3, these properties playa crucial role in solving the problem of this paper. However, as
their derivation is independent of that problem, they have wider scope.

2.1. Notation. Right-angle rotation. The Schwarz theorem
The notation presented here is similar to that adopted in He and Curnier (1995) and

He (1997). Throughout the paper, coordinate-free notation will be employed as much as
possible. Bold-face (outline) Latin minuscule and majuscule letters will be used to denote
vectors (3rd-order) and 2nd-order (4th-order) tensors, respectively. Lin, ~in and !Lin will
stand for the respective spaces of 2nd-, 3rd- and 4th-order tensors over a 2-D Euclidean
space "t/". The inner product of any vector space will be designated by a bold-face dot·; for
example, a' b for a, bE 1/', and A· IB for A, IB E !Lin.

Given bE 1/" and A, BELin, we define A (8) b, A ® B and A ® B by setting, for any u,
VEj/~:

(A ® b)u :=(Au) ® b, (A ® B)(u ® v) :=(Au) ®(Bv),

(A ® BHu ® v) :=(Av) ®(Bu).

(2.1a)

(2.1 b)

The products A ® B and A 0 B are of Kronecker type. With the help of the identities
(Au) ®(Bv) = A(u ® v)BT and (u ® V)T = v ® u, it can be verified that, for each XELin,

(2.2)

Thus, the identity ~ and transposition lr on Lin as well as the identity ~ on Sym have their
coordinate-free expressions:

~ = 1 ® 1, lr = 10 1, ~ = ~(1 (8) 1 + 1 ® 1).

In addition to (2.2), the following identities will be useful:

(2.3)

(a ® b) ®(c ® d) = a ® c ® b ® d, (a ® b) ®(c ® d) = a ® c ® d ® b, (2Aa)

(A ® BHC ® D) = (AC) (8)(BD), (A 0 B)(C ® D) = (AD) ®(BC), (2Ab)

(A (8) BHC ® D) = (AC) 0(BD), (A ® B)(C ® D) = (AD) ®(BC). (2Ac)

If Q ELin is orthogonal, i.e. Qu· Qy = u· v for all u, VE 'f~, then iQ :=(Q (8) Q+Q ®
Q)/2 is a rotation on the subspace Sym:= {S E Lin ISu' v = u· Sv, \iu, v E i"}, since

det(iQ) = I and iQU' iQV = U· V for all U, V ESym. Letting {e" e2 } be an orthonormal
basis for 1/', the right-angle rotation R from e2 to e l is represented by

(2.5)

This tensor is equally the 2-D alternator, because its Cartesian components have the
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property that R J , = R22 = 0 and R 12 = -R21 = 1. In view of (2.4a) and the fact that
1 = e, ® eJ +e2 ® e2, we can relate IR to R by

(2.6)

This means that IR is the right-angle rotation on Sym. Cherkaev et al. (1992) seem to be the
first to give such an interpretation to IR. Applying (2.4b) and (2.4c) to IR with its domain
and range restricted to Sym yields another remarkable property of IR (He, 1997):

(2.7)

where IR- J and IR T are defined by ~-J~ = ~~-] = Uand IR TU' V = u· ~V for every U,
VESym.

The notion of symmetric tensors is familiar when the order n of tensors is equal to
two. To extent it to the case of n > 2, we write the usual definition of the symmetry of
SESym, i.e. SU,'U2=U,'SU2 for all Uj, U2E"Y', in the equivalent form:
S '(U2 ® u1) = S '(u] ® U2)' In a similar manner, a tensor S of order n ~ 2 is said to be
symmetric if

(2.8)

for any Uj, U2,'''' Un E1/' and for all permutation (J of the set {1, 2, ... ,n}. In matrix
notation, (2.8) means that a Cartesian component Si,i,i, of S is invariant under all per­
mutation of indices. This amounts to writing

(2.9)

where SUI i 2 .i,) denotes the sum of the terms obtained by permuting the indices of Si\ i
2

i" in
all n! possible ways. In practice, (2.9) constitutes a computationally convenient criterion
for verifying whether a given tensor of order n ~ 2 is symmetric.

In close connection with the above notion of symmetric tensors is the classical Schwarz
theorem, which will playa key role in Section 3. Let cp, g and G be sufficiently smooth
scalar, vector and 2nd-order tensor value functions on ncR 2. For their derivatives we
shall use the notations:

(2. lOa)

(V ® V ® V)cp = cp.ume, ® ej ® en''' (V ® V ® V ® V)cp = cp.ijmnei ® e j ® em ® en,

(2.l0b)

V' g = gi.i, GV = GU,ieh (V ® V) . G = G U.I !' (2.lOc)

where the indices following a comma indicate partial differentiations. The Schwarz theorem
asserts that the tensors (V ® V)cp, (V ® V ® V)cp and (V ® V ® V ® V)cp are all symmetric,
i.e., that their Cartesian matrix components have the property that

(2.11 )

provided cp is four times continuously differentiable or of class C(4) for short.

2.2. Decomposition of3rd- and 4th-order tensors exhibiting index permutation symmetries
It has been shown (Backus, 1970; Spencer, 1970; He, 1997) that the classical orthog­

onal decomposition of a 2nd-order tensor L ELin into a unique symmetric tensor
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S = (L+V)/2 and a unique antisymmetric tensor A =(L-V)/2 can be extended to a
tensor L of order n > 2. In the extended sense, a tensor A of order n :;::: 2 is said to be
antisymmetric if its matrix components Ai, i,i" verify the condition that

(2.12)

With any given elementL of the space !f of nth-order tensors (n :;::: 2), we can associate
two tensors, S and A, whose matrix components are calculated in terms of those of L by

(2.13)

By this construction, S is symmetric and A is antisymmetric, for they satisfy (2.9) and
(2.12), respectively. In addition, S and A are orthogonal:

(2.14)

This stems from both the symmetry ofS and the antisymmetry of A; indeed, owing to (2.9)
and (2.12), Si,i,.i"Ai,i,i" = Si,i,i"Au,i,l,)n! = O. A summary account of (2.13)2 and (2.14)
consists in writing

!f=/!)EBsd, (2.15)

where EB represents the orthogonal direct sum of the respective subspaces, // and d,
formed by all nth-order symmetric and antisymmetric tensors over'r. Uniqueness of
decomposition (2.15) can be proved in the same way as that used for the well-known one
L = S+A.

Before applying (2.13) and (2.15) to 3rd- and 4th-order tensors presenting index
permutation symmetries, let us define what we mean by an index permutation symmetry of
L. Such a symmetry will refer to a non-identity permutation a of the set {1, 2, ... n} verifying
the condition that

(2.16)

for any u" u2, ... and UII belonging toi. For example, if a is a permutation such that
a(l) = 2, a(2) = 1 and a(k) = k for k E {3, 4, ... ,n}, the corresponding index permutation
symmetry means that the components of L have the property that L i ,I,i3

1" = Li,i,i;l"'
The number of the independent components of a 2-D nth-order tensor L is the

dimension of !f. When L has not any index permutation symmetry, this number equals 2n
,

so that dim(!f) = 211
• Concerning the corresponding S which has all the possible index

permutation symmetries, the number of its independent components becomes that of the
combinations obtained by filling a table of n(:;::: 2) boxes with the elements I and 2. A simple
calculation shows that this number equals n + I, so that dim(51') = n + I. The dimension of
d can be deduced from the classical algebraic formula dim(!f) = dim (,C/') + dim(.d) for a
direct sum. In brief, we have

dim (51') = n+ 1, dim(.d) = 2n -n-l, dim(!f) = dim(5I')+dim(,d) = 2". (2.17)

We proceed now to deal with the decomposition of 3rd- and 4th-order tensors with
certain index permutation symmetries by using (2.13), (2.15) and (2.17). First, consider the
subspace A of all 3rd-order tensors with the index permutation symmetry a characterized
by a ({I, 2, 3}) = {I, 3, 2} ; that is, the components h'im of ~ E A c Din have the property that
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(2.18)

Let us set L == lin, S == § and A == ill. Then, applying (2.13) while taking (2.18) into account,
we obtain the components of § and ill in terms of those of lin :

(2.19)

Further, writing out (2.19) while bearing in mind that ill has the index permutation symmetry
of lin, we get

By means of the tensor products defined in (2.1 a), these expressions can be written in the
compact form:

ill = v@ 1-~(1 @v+1 ®v), § = lIn-v® I+~(I @v+J ~v),

with

Putting !£ == A, g == d and s1 == a, formula (2.15) applies so that

It = d EEl a.

(2.20a)

(2.20b)

(2.21 )

On the other hand, due to (2.18), (2.17) cannot be directly used. However, with the help of
(2.20) and the simple fact that dim (It) = 6, we see that dim (a) = 2 and dim(d) = 4.

Next, we come to the decomposition of a 2-D elastic tensor IE. By definition, IE is a
linear mapping from Sym into itself. Denoting by Iff the subspace of lin formed by all
elastic tensors, then any IE E Iff has two index permutation symmetries (J and (J':

(J({l,2,3,4)) = {2,1,3,4} and (J'({l,2,3,4}) = {l,2,4,3}. In more familiar words, the
components EUmn of IE have two minor symmetries:

(2.22)

In coordinate-free notation, (2.22) reads as IE = (1 ® I)IE = 1E(1 @ I). Along the line taken
for Awhile keeping (2.22) in mind, we can decompose iff into the two orthogonal subspaces,
g and s1, of symmetric and antisymmetric elastic tensors. Precisely, with a given IE E Iff is
associated a unique § E // and a unique A E s#, whose components are given by

(2.23a)

(2.23b)

These two expressions are obtained by applying (2.13) to Eijmn together with (2.22). As has
been done for (2.19), upon writing (2.23) for i,j, m, n = 1,2 and carefully examining the
component expressions obtained, we can deduce that
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(2.24a)

where the transposition lET of IE is understood to be such that IErv· V = U • lEV for any U,
V E Sym, and the scalar ()( is given by

(2.24b)

As in (2.21), we can write

(2.25)

with dim(Y') = 5, dim(d) = 4 and dim(tff) = 9.
As will be seen in Section 3, we need further decompose § E Y' into the sum of § E Y'

and § E Y', such that

(2.26)

In seeking the expressions of § and § in terms of §, it is important to observe that
Siimm = § '(1 ® 1) = § '(1 ~ 1) = § '(1 ® 1) owing to the index permutation symmetries of
§. Then, bearing in mind (2.26) and the requirement that § and § be symmetric, we are
led to

with

v ! _ _! _
§ = g(1 ® 1+1 ~ 1+1 ® 1), § = §- g(1 ® 1+1 ~ 1+1 ® 1), (2.27a)

(2.27b)

We can easily verify that § and § are orthogonal, i.e., §. § = O. Denoting by Y and Y
the respective subspaces formed by all tensors § and §, now we can write

(2.28)

From (2.27) and (2.28), we deduce that dim(Y) = 4 and dim(Y) = I. Introducing (2.28)
into (2.25), yields

(2.29)

Finally, we make the decomposition of a hyperelastic tensor by specializing (2.24) and
(2.27). By definition, a hyperelastic tensor IHJ refers to a self-adjoint linear mapping from
Sym into itself. The space formed by all hyperelastic tensors will be designated by JIf. In
comparison with an elastic tensor, IHJ has the additional index permutation symmetry (J1f

defined by (J1f ({ 1,2,3,4}) = {3, 4, I, 2}. It is easy to verify that in this case, (J' = (J1f (J(JIf. So,
the defining property of IHJ is that its components Humn have the following minor and major
symmetries:

(2.30)

In coordinate-free notation, (2.30) reads as IHJ = (1 ® 1)1HI = IHJT. Substituting IHJ for IE and
using IHJ = IHJT in (2.24), we obtain
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A = cdR, §=IHJ-cdR, a=~(HII22-HI212)' (2.31 )

Upon setting Iff == £', (2.25) remains valid but dim(.'!') = 5, dim(sl) = I and dime£') = 6.
Furthermore, (2.27)-(2.29) hold provided that Iff is replaced by £', and (2.27b) by

(2.32)

The formulae in (2.31) have already been given in (He, 1997), but here they have been
deduced from the more general formulae (2.24).

3. NECESSARY AND SUFFICIENT CONDITIONS FOR THE INVARIANCE OF PLANE
STRESSES

With the notation and preliminary results presented in the previous section, we are
now ready to formulate the problem described in the Introduction and to prove step by
step the two main assertions stated there.

3.1. Formulation of the stress inuariance problem
In order to focus attention on the basic ideas underlying our investigations, we shall

consider only those bodies which occupy bounded simply-connected domains with piecewise
smooth boundaries; in addition, any field over the domain Q occupied by such a solid will
be assumed to be sufficiently regular so that its derivatives involved make sense. Removal
of the restriction concerning the simple connection of Q can be made along the line taken
by Dundurs and Markenscoff (1993), and relaxation of the hypothesis relative to the
continuity of elastic tensor fields can be carried out on the basis of the important remark
made by Milton and Movchan (1995) at the end of Section 5 of their paper.

As in Cherkaev et al. (1992), the traction boundary problem ofthe plane linear problem
is below formulated in terms of the classical Airy function. First, consider the case (a) of
Fig. I, where the 2-D (infinitesimal) strain and stress tensor fields, E(x) and T(x), are
related according to Hooke's law:

E(x) = lI«x)T(x), x E Q. (3.1 )

Here, the 4th-order tensor II< has at least two minor symmetries resulting from the symmetry
of E and that of T. In other words, II< belongs to the elastic tensor space {,". When (3.1) is
derived from a scalar function, II< possesses the additional major symmetry for it to belong
to the hyperelastic tensor space £'. In our forthcoming formulation, the condition that
II< E £' is not required. Let I.{J : Q ..... R be the Airy function, which is assumed to be of class
C (4) on the interior n of Q and piecewise twice continuously differentiable on the boundary
an of Q. Then the stress field derived from I.{J. i.e.,

T(x) = !R(V ® V)I.{J(x), x E Q (3.2)

where !R is given by (1.1[) and V ® V is defined by (2.IOa), always fulfills the equation of
equilibrium in the absence of body forces:

T(x)V = Tii" (x)e i = 0, XEn. (3.3)

With the hypothesis that Q is simply connected, the strain field E(x) obtained from (3.1)
can be derived from a displacement field u: n ..... ·r, i.e.,

E(x) = HVu(x) + (VU(X»T], x En,

if and only if E(x) satisfies the compatibility equation:

(3.4)
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(V ® V)· [IRE(x)] = 0, XEn.

In addition, T(x) must satisfy the prescribed traction boundary condition:

T(x)n(x) = t(x), x EOn,

3527

(3.5)

(3.6)

where n(x) designates the unit outward normal to on at x and the surface traction vector
function t : on -> j/' is assumed to be piecewise continuous and self-equilibrated. Combining
(3.2), (3.1) and (3.5) and introducing (3.2) into (3.6), we obtain the classical formulation
of the traction boundary value problem in terms of ({) :

(P)j(V ® V)· [1R1Ii(x)IR(V ® V)({)(x)] = 0, XEn,

[!R(V ® V)({)(x)]n(x) = t(x), x EOn.

(3.7)

(3.8)

Next, consider the case (a') of Fig. I, which is different from the case (a) only in that
the strain and stress fields, E'(x) and r(x), are related by another elastic tensor field lIi'(x) :

E'(x) = lIi'(x)r(x) = [1Ii(x) + []I(x)]r(x), XE!i. (3.9)

where (1.3) is employed. Let (()': 0 -> R be the corresponding Airy function, then the stress
field is given by

r (x) = !R(V ® V)({)' (x), X E O. (3.10)

Analogous to the case (a), the formulation of the traction boundary value problem in the
case (a') takes the form

1
(V ® V)· [!RIIi(x)!R(V ® V)({)'(x)]

(1") +(V ® V)· [RI>(x)R(V ® V)~'(x)l ~ 0,

[!R(V ® V)({)'(x)]n(x) = t(x), XEan.

XEn, (3.11 )

(3.12)

Hereafter, we suppose that the boundary value problem data (0, iii, t) (or (0, iii', t))
are such that (P) (or (rn admits a sufficiently regular solution t/J (or t/J'), which is unique
modulo an affine function of x. It is in this sense that we shall speak of the unique solution
of (P) or (r). Moreover, a distinction will be made between the unknown and solution of
each problem by using two different symbols, say, (() for the unknown of (P) and t/J for its
solution.

In view of (3.2) and (3.10), the requirement that r(x) be the same as T(x) for any
x E 0 implies that the difference between t/J and t/J' is at most an affine function of x:

t/J'(x)-t/J(x) = p+q"X, XEO, (3.13)

where p is a constant scalar and q E'I/ is a constant vector. Introducing (3.13) into (3.11)
and using the fact that t/J satisfies equation (3.7), we obtain

(V ® V)· [1R[]I(x)!R(V ® V)t/J(x)] = 0, XEn. (3.14)

This is the necessary and sufficient condition that []I(x) must satisfy in order that rex)
coincides with T(x) at each x E O. In passing, note that, since []I represents the difference
between iii' and iii belonging both to fS', it has generally not the major symmetry.

It is important to remember that in (3.14), t/J(x) is the solution of problem (P) and
depends on the data (0, iii, t) for that problem. Consequently, of the set formed by all []I's



3528 Q.-c. He

satisfying (3.14), there may be some elements which are dependent on (0, IK, t). As explained
in the Introduction, we are, however, interested only in those elastic tensor fields IT:D(x)
which verify (3.14) regardless of (n, IK, t). More precisely, our problem here is to find the
4th-order tensor valued functions IT:D(x) with the minor symmetries, such that (3.14) holds
for each element tf; of the set 'P of solutions of problem (P) obtained by varying data
(n, IK, t) in all possible ways. Thus, the direct approach to our problem is to introduce each
element tf; of'P into (3.14) and to solve the resulting partial differential equations for IT:D.
However, this approach can be used only when the set 'P is entirely available. Unfortunately,
'P is currently unknown, and is very difficult to characterize since data (n, K t) can be
varied in an infinite number of manners. The strategy we elaborate for overcoming this
difficulty consists of:

(i) determining certain simple elements of'P or equivalently the solutions of some traction
boundary value problems (P) with simple data (n, IK, t) ;

(ii) introducing each of the previously determined particular elements of'P into (3.14) and
solving the resulting equation about IT:D(x) so as to establish a certain number of
necessary conditions for IT:D(x) ;

(iii) verifying whether the necessary conditions lastly constructed for IT:D(x) are also
sufficient, i.e., whether the form of IT:D(x) resulting from (ii) is such that equations
(3.14) is satisfied regardless of tf;.

If the answer from (iii) is positive, then the form of IT:D(x) obtained is both necessary and
sufficient for preserving the invariance of stresses. It is worth making the two remarks on
this strategy. Firstly, the problems (P) with particular data (n, IK, t) must be well-posed,
i.e., that each of them has one and only one solution tf;(x) to within an affine function of x,
because the function tf; in eqn (3.14) is the solution of such a problem. Secondly, the fact
that only some particular traction boundary value problems are used in step (ii) causes no
loss of generality if the necessary conditions deduced from (ii) are verified to be sufficient
in step (iii).

When treating (3.14), it is convenient to define

cex) := 1RIT:D(x)lR,

and to write (3.14) in the following equivalent form:

(V ® V) . [C(x)(V (8) V)tf;(x)] = 0, X E n.

(3.15)

(3.16)

It is immediate from (3.15) that C possesses the minor symmetries. Once C is known, we
can use the property (2.7) of IR for inverting (3.15) and obtain

IT:D(x) = IRC(x)lR. (3.17)

Therefore, (3.14) will be replaced by (3.16) together with (3.17).
Before using the strategy described above to find the general form of IT:D(x), it seems to

us important to emphasize the hypothesis that either the problem (P) or (P') has a unique
smooth solution to within an affine function ofx. This hypothesis, tacitly made by Cherkaev
et al. (1992) and other authors, is essential, because the comparison between the fields T(x)
and rex) makes sense only when each of them exists and is unique. The restrictions imposed
by this requirement on the data (n, IK, t) and (n, IK', t) are beyond the scope of the present
work. For this, the reader can refer to Knops and Payne (1971) and Duvaut (1990).
Nevertheless, it is useful to note that once the problem (P) has a unique solution, so does
the problem (P') provided (3.14) is ensured.

3.2. Solution of the stress invariance problem in the hyperelastic case
In this paragraph, IT:D(x) is assumed to be hyperelastic. By (3.15), this amounts to

assuming that C E Yf. So, C(x) has the following index permutation symmetries:
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(3.18)

Then, the results on hyperelastic tensors, derived in Section 2.2, apply. As a consequence
of (2.31), we can write

C(x) = §(x)+rx(x)lR, rx(x) = HCI122(X)-CI212(X)].

Introducing (3.19J into (3.16) gives

(V @ V) . [§(x)(V ® V)t/J(x)] + (V @ V) . [rx(x)IR(V @ V)t/J(x)] = o.

Use of the orthogonality relations (He, 1997)

IR ·(V ® V @ V @ V)t/J = o. IR' [Vrx @(V ® V @ V)t/J] = 0,

(3.19)

(3.20)

(3.21)

in developing the 2nd term of the right-hand member of (3.20) allows us to write it as

(V @ V) . [§(x)(V @ V)t/J(x)] + ~rx(x)~t/J(x) - [(V @ V)rx(x)]' [(V @ V)t/J(x)] = 0, x E n.
(3.22)

where ~ is the usual Laplacian operator.
Hence, the initial problem of determining C(x) such that (3.16) is fulfilled for any

t/J E 'P has been transformed into that of finding rx(x) and §(x) so that (3.22) is satisfied for
all t/J E 'P. The solution of this problem is contained in the following statement.

Proposition 3.1. Equation (3.22) holds for the solution t/J of any traction boundary value
problem (P) if and only if

rx(x) = b' x + c. §(x) = @. (3.23)

Proof Sufficiency is immediate. It remains to show necessity. To this end, we write out
(3.22) in index notations while omitting the variable x for simplicity:

(a)

Recall that, according to the Schwarz theorem, t/J.mll' t/J"mn and t/J,ijmn are unchanged with any
index permutation.

The first traction boundary value problem used to establish a necessary condition for
rx(x) and §(x) is

{
~~CP(X) = 0 ifllxll < I,

(PI)
[IR(V@ V)cp(x)]x = (IRF)x ifllxll = I,

where ~~ denotes the biharmonic operator and F is an arbitrary non-zero constant 2nd­
order symmetric tensor. Problem (PI) corresponds to problem (P) with n being a disc of
unit radius, lK(x) a constant isotropic hyperelastic tensor and t(x) = IRFx. Let us first check
that the surface tractions t on on = {x I x II = I} are self-equilibrated. Indeed, by putting
T = IRF and noting the n(x) = x for x E on, we have the force and moment equilibrium:
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where CUk are the components of the usual permutation tensor, and the divergence theorem
has been employed. Next, it is easy to verify that

t{1(x) = iF -(x ® x) (b)

is one solution of (PI)' On the other hand, it is known (see e.g. Muskhelishivili, 1963;
Knops and Payne, 1971) that such a problem admits at most one solution to within an
affine function of x. Therefore, the function t{1(x) defined by (b) is effectively an element of
q'. Inserting (b) into (a) while noting that all higher derivatives of t{1(x) than the 2nd one
are zero, it follows from the arbitrariness of F that

which, in its turn, reduces (a) to

(c)

2SUml1 .it{1,imn +SUmnt{1.ijml1 = o. (d)

Next, we modify problem (PI) upon replacing the homogeneous traction boundary
condition by a non homogenous one:

{
~~<P(x) = 0 if Ilxll < 1,

(Po)
. [IR(V Q9 V)<p(x)]x = [1R(h)]x if Ilxll = 1.

Here, fEd is an arbitrary non-zero constant 3rd-order symmetric tensor and (h)u = j;jmxm'
As in (PI)' to within an affine function of x the problem (P2) has the unique solution

t{1 (x) = ~ 1.(x Q9 x Q9 x).

Introducing (e) into (d), the arbitrariness of f allows us to conclude that

Suml1.f = o.

In view of this, (d) can be simplified into

Sijmnt/J,ijmn == O.

In addition, (f) implies that Sum"." = 0, so that (c) becomes

Writing out (h) component by component, we see

X,U = 0 (i,j = 1,2).

This means that x(x) is an affine function of x, thus proving the necessity of (3.23)1'
To further use the necessary condition (g), consider

{
~~<p(X) = 0 ifllxll < 1,

(P1 ) _

, [IR(V Q9 V)<p(x)]x = [1R1F(x Q9 x)]x ifllxll = 1,

(e)

(f)

(g)

(h)

(i)

where IF E f)' is an arbitrary non-zero constant 4th-order symmetric tensor and has the
additional property that
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(j)

Similar to the preceding problems, (P,) has a unique solution modulo an affine function of
x:

t/l(x) = ~ ~ '(x ® x ® x ® x).

Indeed, the property (j) and the identity

t-.t-.qJ = ~(1 ® 1+ 1 ® 1+ 1 ® 1) ·(V ® V ® V ® V)qJ

ensure that t-.t-.J.jJ = O. Substituting of (k) into (g) gives

§.~ = O.

(k)

(I)

which indicates that § is perpendicular to ~. Since ~ E /"J, it follows from (2.28) and (2.27)
that § E!I' and

Thus, (g) becomes

"C.
§ = 8 (l ® 1+1 ® 1+1 ® 1).

"Ct-.t-.J.jJ(x) = O.

(m)

(n)

Moreover, (m) together with (f) implies that "C is constant.
At present, we do not know whether "C is zero or non-zero. To clarify this point,

consider another traction boundary value problem:

if IIxl1 < 1,

where i' is a scalar constant. This problem is the problem (P) in which n is a disc of unit
radius, iii is homogenous square-symmetric with K IIII > 0 and (KII22+2KI212)/KIIII = y [see
He (1997)] and the surface tractions are given by t(x) = (yx; +xlx~)el­
(yx~ +xtx2)e2' For iii not to degenerate into an isotropic elastic tensor, we require that
y =I- 1. To within an affine function of x, the unique solution of (P4) is

,I,(X) __ ~},(,.4+ ,-4) +~ ,.2 y2
0/ - 24 .'1.-1 ,'\.2 4~'\.1-'\.2·

As Ij;(x) satisfies the first equation of (P4),

t-.t-.J.jJ(x) = 2(1-y)Ij;.1 122 (x) = 2(l-y).

Recalling that y =I- 1, we deduce from (n) and (0) that

"C = o.

(0)

(p)

Substituting this result into (m) proves the necessity of (3.23h
In the preceding proof, the solutions of problems (pa-(P4 ) have played a crucial role.

This may give us the impression that the conclusion obtained would depend on these
particular solutions and, hence, be not general. In reality, the necessary conditions for a(x)
and Sex) derived by using these solutions have turned out to be also sufficient, i.e. (3.22)
holds irrespective of Ij;. Thus, the generality of the conclusion is not affected by use of the
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particular problems (PI)-(P4)' Another point which should be emphasized is the verification
of uniqueness of each solution. Indeed, the function ljJ(x) in eqn (3.14) [or (3.16)] is the
solution of a traction boundary value problem of plane linear elasticity, which is assumed
to unique to within an affine function of x. For uniqueness of the solutions of problems
(P1)-(P4) we have referred to the criteria given in Knops and Payne (1971).

Proposition 3.1 together with (3.19)[ tells us that the most general form for C(x) is

iC(x) = (b' x + c)1Fit

Applying (3.17) and using the property (2.7) of ~, we get the form of [j)(x) :

(3.24)

(3.25)

Thus, we have completed the proof of the following result.

Theorem 3.2. Let PJ be a simply-connected plane solid which is made of a linearly elastic
material M characterized by an elastic tensor field lK(x), and is subjected to prescribed
traction forces on its boundary. Consider another linearly elastic material M' which is
characterized by an elastic tensor field lK'(x) different from lK(x) by some hyperelastic
tensor field, and is used to substitute for M. Then the stress tensor field of.rJ6 is unchanged
with the substitution of M' for M if and only if lK'(x) differs from lK(x) by
[j)(x) =(b·x+c)~.

Compared with the results of Cherkaev et al. (1992) and Dundurs and Markenscoff (1993),
this theorem is stronger in the sense that it affirms the necessity of relation (1.2). Moreover,
note that neither lK(x) nor lK'(x) is assumed to have the major symmetry, but only their
difference is required to have such a property.

3.3. Solution of the stress invariance problem in the elastic case
We turn to (3.16) and seek the general form of C(x) when it has only the minor

symmetries:

(3.26)

The results of paragraph 2.2 [eqns (2.24)-(2.25)] concerning the decomposition of an elastic
tensor allows us to partition C(x) in the following way:

C(x) = §(x)+WW(x)+a(x)~,

Inserting (3.27a) into (3.16) yields

(V ® V)' {[§(x) + WW(x)](V ® V)ljJ(x)} + (V ® V)· [a(x)IR(V ® V)ljJ(x)] = o.

Using (3.21), we can write (3.28) in the equivalent form

(3.27a)

(3.27b)

(3.27c)

(3.28)

0= (V ® V) • ([§(x) + WW(x)](V ® V)ljJ(x)} + ~a(x)~ljJ(x)

-[(V ® V)a(x)]' [(V ® V)l/J(x)], XEn. (3.29)

This equation is different from (3.22) only in that the antisymmetric tensor WW(x) appears.
To find the general forms of a(x), §(x) and WW(x) such that (3.29) is fulfilled for any

l/J E '1', we employ the same approach as that used in the hyperelastic case. However, the
presence of WW(x) renders it more complicated.
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Proposition 3.3. Equation (3.29) holds for the solution t/J of any traction boundary value
problem (P) if and only if

o:(x) = b· x +c, §(x) = «D,

Willi (x) = W2222 (X) = W I212 (X) = 0,

where WI. W2, W3, " 11 and eare constant.

Proof It is convenient to write out (3.29) in index notation:

(3.30a)

(3.30b)

(3.30c)

(3.30d)

(3.30e)

As in proving Proposition 3.1, we now successively substitute each of the solutions of (P I )­

(P4) into (a') to establish the necessary condition for :t, § and W.
If the solution of (PI), i.e., the expression (b), is used in (a'), we infer from the

arbitrariness of F that

This reduces (a') to

2(SUmn,i + Wi;nm,Jo/,fmn + Sijmnl/J,ijmn == o.

(c')

(d')

Setting h jmn = Sijmn.i+ Wijmn,i, then it is clear that h jmn = h ,nm and the corresponding tensor In
belongs to the subspace Ii defined in Subsection 2.2. Then, formulae (2.20) and (2.21) apply
to In :

ill = v ® 1- ~(1 ® v+1 ® v), § = In - v ® 1+~(l ® v+1 ® v).

If the solution (e) is introduced into (d'), we have

where the 2nd equality is owing to the fact that f is orthogonal to ill. Since fimn is arbitrary,
it follows that Sjmn = O. This amounts to writing

As Sijmn,i is symmetric relative to the indices i,j, m, and al'nn is antisymmetric, we infer from
the foregoing expression that

(f')

(f")

These two expressions simplify (d') into
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Moreover, (f) and (f') imply that

Q.-c. He

Stjrnnf/!,l'imn = O. (g')

With this, (c') becomes

(h')

Using condition (g') in the same way as in the proof of Proposition 3.1, we conclude
that Sex) necessarily corresponds to the 4th-order zero tensor.

The equations governing a:(x) and W(x) are (h') and (f'). To deal with these two
equations, it is helpful to write out the components of W(x). By definition,
W(x) = [iC(x) - C T(x)1/2. So,

WIIII(X) = W2222 (X) = WI212 (X) = 0,

which corresponds to (3.39b). For notational convenience the non-zero components of
W(x) are denoted as follows:

X(x) = WI 122 (x) = - W2211 (x), Y(x) = W 1112 (x) = - Willi (x),

Z(x) = W 22I2 (x) = - WI 222 (x).

Writing out (f"), we see that the first partial derivatives of X, Y and Z are interrelated in a
simple way:

XI (x) = -Z2(X), X 2 (x) = Y. I (x),

Y.z(x) = 0, ZI (x) = o.

The last two equations imply that Y is independent of X 2 and Z of XI. Consequently, we
can write

Y(x) = y(x I ), Z(x) = Z(X2).

In view of this, the first two equations become

Integrating X.I(x) with respect to XI, we obtain

This is compatible with the fact that Xix) is a function of XI alone, if and only if

where eand 11 are two constants. Integrating these two equations gives
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where Wh W3 and ( are three constants. Introduction of these two expressions into those of
X(x) and Z(x) leads to

X(x) = WI +(X1 +11x2 +28x I X 2 ,

Z(x) = W3 -(X2 -8x~.

To determine the form of Y(x), it suffices to use the relation Y(x) = y(xlL together with

Thus,

where W2 is a constant. The foregoing expressions for X(x), Y(x) and Z(x), together with
their definitions, show the necessity of (3.30c)--(3.30e).

To determine (l(x), we return to equation (h'). With the expressions ofW(x) just found
out, (h') implies that

This indicates that (l(x) necessarily takes the form of the first expression of (3.30a).
Above, we have proved that each of the expressions (3.30a)-(3.30e) is necessary. If

they are substituted into (a'), it is easily verified that (a') holds regardless of function lj; ;
this gives the sufficiency of (3. 30a)-(3.30e).

If (3.30a)-(3.30e) are introduced into (3.27a), we have

C(x) = W(x)+(b'x+c)~,

where W(x) is specified by (3.30b)-(3.30e). By means of (3.17) and (2.7), we obtain

Here the tensor \I(x) is related to W(x) by

\I (x) := IRW(x)R

(3.31 )

(3.32)

(3.33)

Bearing in mind (2.7), it is easy to verify that \IT(x) = - \I(x). The components of \I(x)
can be determined via (3.33) and (3.30b)-(3.30e):

(3.34a)

(3.34b)

(3.34c)

(3.34d)

Thus we have completed the proof of the following assertion.

Theorem 3.4. Let f!4 be a simply-connected plane solid which is made of a linearly elastic
material M characterized by an elastic tensor field lK(x), and is subjected to prescribed
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traction forces on its boundary. Consider another linearly elastic material M' which is
characterized by an elastic tensor field K(x) and is used to substitute for M. Then the stress
tensor field of fJ6 is unchanged with the substitution of M' for M if and only if K(x) is
related to Ili(x) as follows:

with

K(x) = lli(x)+'V(x)+(b'x+c)R (3.35a)

'V(x) = (WI +(x1+1]x2+2t1xlx2)(e2 ®e2 ®el ®el-e l ®el ®e2®e2)

+ (w, -(x 2 -tlxD[(e j ® e2 +e2 ® ed ® el ® el -e} ® el ®(e} ® e2+e2 ® e l)]

+ (W2 +1]XI +tlxi)[(e l ® e2+e2® e l ) ® e2 ® e2 -e2 ® e2®(e l ® e2+e2 ® el)].

(3.35b)

In comparison with the extended relation (1.2) of Dundurs and Markenscoff (1993),
(3.35a) contains an additional term 'V(x). This term is a quadratic function ofx and involves
six constants. Obviously, when both Ili(x) and K(x) are supposed to be hyperelastic, 'V(x)
reduces to the 4th-order zero tensor.

4. CONCLUDING REMARKS

We have answered the question whether there is a more general relation than (1.2) for
an elastic tensor field change not to alter the stress state of a plane linearly elastic solid
undergoing prescribed traction forces on its boundary. In answering this question, three
steps have turned out to be decisive. The first one was a careful reformulation of the original
problem of Cherkaev et al. (1992) via the orthogonal decompositions of hyperelastic and
elastic tensors. The second one was to construct necessary conditions, prior to sufficient
conditions, by means of the solutions of some particular traction boundary value problems
of plane linear elasticity. The third one was to show that the constructed necessary con­
ditions are also sufficient. As a consequence of the last step, use of some particular traction
boundary value problems did not affect the generality of our results.

The conclusion asserting the necessity of (1.2) for the hyperelastic case is important,
since it completes the results of Cherkaev et al. (1992) and Dundurs and Markenscoff
(1993), which have been shown to have a large number of significant applications in the
mechanics of composite materials (see, e.g., Thorpe and Jasiuk, 1992; Moran and Gosz,
1994; Zheng and Hwang, 1996, 1997). Our theoretical result regarding the existence of a
more general necessary and sufficient relation in the elastic case is new and has practical
applications. For example, it can be applied to non-associated elastoplastic materials, where
the stresses and strains are incrementally related by a 4th-order tensor presenting the
permutation index symmetries of an elastic tensor. Another domain of application is
photoelasticity, since the photoelastic tensor has the same algebraic structure as an elastic
tensor.
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